Регистрация / Вход
Прислать материал

Аллиум-тест: надежный метод определения генотоксичности искусственных наночастиц

Сведения об участнике
Сафронова Нина Александровна
ФИО (на английском языке)
Safronova Nina Alexandrovna
Название организации
МГУ им. М.В. Ломоносова, факультет почвоведения
Аллиум-тест: надежный метод определения генотоксичности искусственных наночастиц
Название (на английском языке)
Allium Test: a Reliable Assay for Detecting Genotoxicity of Engineered Nanoparticles
Соавторы (ФИО, организация, город, страна)
Куликова Наталья Александровна (МГУ им.М.В.Ломоносова, факультет почвоведения, Москва, РФ)
Соавторы (на английском языке)
Kulikova N.A.

Engineered Nanoparticles (NP) are industrially produced particles with at least one dimension in the nano-scale. NPs compared to their analogues bulk compounds are more chemically reactive and have a higher biological activity, which is caused by a greater surface area per unit mass and by NPs’ size that is comparable with the size of cellular structures. Considering this ecotoxicology risk assessment provides rigorous attention towards NPs (EFSA 2011 [1]; OEDC 2010[2]); nevertheless particular regard is needed for issues concerning possible mutagenic hazards for living organisms. In order to study them genotoxicity assays that are reliable for NPs are necessary. Standard tests that are efficient for bulk material have demonstrated to be problematic when nanomaterials were tested. In fact, many of the most commonly used genotoxicity tests (Ames test, Comet assay and micronucleus test) displayed false positive/negative results, which were caused by interactions between NPs and the method components during the assay performance [3,4,5]. The interfering interactions are а consequence of two aspects: (a) the specific NPs’ properties (high adsorption capacity, various optical properties, hydrophobicity, chemical composition, surface charge, surface properties, high catalytic activities [3]) and (b) the method features (such as: detecting mode, used reagents, operation sequence, or applied cell or DNA treatment, etc.). On the contrary, more direct methods with a simpler procedure (the chromosomal aberration (CA) test, for instance) do not provide possibilities for methodic interference and show reliable assay results [5]. Allium cepa chromosomal aberration assay (also called Allium test) is a good example for this type of genotoxicity tests. Allium test is based on the evaluation of DNA damages that are expressed as CAs, disturbances in the mitotic cycle, nuclear alterations and presence of micronucleus in the root tip meristem cells. Common onion (Allium cepa L.) is a very suitable bioassay model organism for genotoxic studies, since it provides: relatively large chromosomes that allow easily to detect CAs; high sensitivity; clear and fast response to different genotoxic substances; a high proportion of dividing cells in the mitosis cycle; diversity in the chromosome morphology; stable karyotype; and rare spontaneous chromosomal damages. The assay itself is simple, sensitive and inexpensive; it may be applied in different plant habitats (water, soil). Heretofore Allium test has been successfully used in different modifications to assess cytogenetic and genotoxic effects of different NPs: silver, TiO2, ZnO2, Bismuth (III), diamond, metal-containing and other NPs [6-16]. Therefore, we conclude that Allium test could be recommended as a reliable method for detecting genotoxicity of NPs.


  1. EFSA Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain//EFSA Journal, v.9, pp.2140 – 2176, 2011
  2. OECD. List of manufactured nanomaterials and list of endpoints for phase one of the sponsorship programme for the testing of manufactured nanomaterials: revision// OECD Environmental Health Safety Publications in the Series on the Safety of Manufactured Nanomaterials, v.27, pp. 1–16, 2010
  3. Karlsson H. L., Bucchianico S. D., Collins A. R. and Dusinska M. Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity?// Environmental and Molecular Mutagenesis, v.56, issue 2, pp.82-96, 2015
  4. Magdolenova Z., Lorenzo Y., Collins A., Dusinska M. Can standard genotoxicity tests be applied to nanopartices?// Journal of Toxicology and Environmental Health, Part A, v. 75, pp. 800–806, 2012
  5. Magdolenova Z., Collins A., Kumar A., Dhawan A., Stone V., Dusinska M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles// Nanotoxicology, v.8, issue 3, pp.233-78, 2014
  6. de Andrade L.R., Brito A.S., Melero A.M., Zanin H., Ceragioli H.J., Baranauskas V., Cunha K.S., Irazusta S.P. Absence of mutagenic and recombinagenic activity of multi-walled carbon nanotubes in the Drosophila wing-spot test and Allium cepa test// Ecotoxicology and Environmental Safety, v.99, pp.92-97, 2014
  7. De Lima R., Feitosa L., do Espírito Santo Pereira A., de Moura M.R., Ahmad Aouada F., Henrique Capparelli Mattoso L., Fernandes Fraceto L. Evaluation of the genotoxicity of chitosan nanoparticles for use in food packaging films//Journal of Food Science,  v.75, issue 6, pp.89-96, 2010
  8. Grillo R., Pereira A.E., Nishisaka C.S., de Lima R., Oehlke K., Greiner R., Fraceto L.F. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control//Journal of Hazardous Materials, v.278, pp.163 – 171, 2014
  9. Klančnik K., Drobne D., Valant J., Dolenc Koce J. Use of a modified Allium test with nanoTiO2//Ecotoxicology and Environmental Safety,  v.74, issue 1, pp.85-92, 2011
  10. Konotop Ie.O., Kovalenko M.S., Ulynets V.Z, Meleshko A.O., Batsmanova L.M., Taran N.Iu. Phytotoxicity of colloidal solutions of metal-containing nanoparticles//Cytology and Genetics, v.28, issue 2, pp.37-42, 2014
  11. Liman R. Genotoxic effects of Bismuth (III) oxide nanoparticles by Allium and Comet assay// Chemosphere,  v.93, issue 2, pp.269-273, 2013
  12. Prokhorova I.M., Kibrik B.S., Pavlov A.V., Pesnya D.S. Estimation of mutagenic effect and modifications of mitosis by silver nanoparticles//Bulletin of Experimental Biology and Medicine, v.156, issiue 2, pp.255-259, 2013
  13. Rigo L.A. , Frescura V., Fiel L., Coradini K., Ourique A.F., Emanuelli T., Quatrin A., Tedesco S., Silva C.B., Guterres S.S., Pohlmann A.R., Beck R.C. Influence of the type of vegetable oil on the drug release profile from lipid-core nanocapsules and in vivo genotoxicity study// Pharmaceutical Development and Technology, v.19, issue 7, pp.789-798, 2014
  14. Safronova N.Stolbova V.Kulikova N. Genotoxic Effect of Nanodiamonds on the Root Tip Cells of Onion (Allium cepa L.)// Russian Journal of Physical Chemistry, issue 2, 2017 (in print)
  15. Suresh Kumar R.S., Shiny P.J., Anjali C.H., Jerobin J., Goshen K.M., Magdassi S., Mukherjee A., Chandrasekaran N. Distinctive effects of nano-sized permethrin in the environment// Environmental Science and Pollution Research,  v.20, issue 4, pp.2593-2602, 2013
  16. Velluti F., Mosconi N., Acevedo A., Borthagaray G., Castiglioni J., Faccio R., Back D.F., Moyna G., Rizzotto M., Torre M.H. Synthesis, characterization, microbiological evaluation, genotoxicity and synergism tests of new nano silver complexes with sulfamoxole: X-ray diffraction of [Ag2(SMX)2]·DMSO// Journal of Inorganic Biochemistry, v.141, pp.58-69, 2014 


Не заполнено