Регистрация / Вход
Прислать материал

Multiphase Fluid Dynamics of Materials Deposition

Name
Iskander
Surname
Akhatov
Scientific organization
Skolkovo Institute of Science and Technology
Academic degree
Doctor of Physical and Mathematical Sciences
Position
Professor and Director of the Center for Design, Manufacturing and Materials
Scientific discipline
Mathematics & Mechanics
Topic
Multiphase Fluid Dynamics of Materials Deposition
Abstract
In the paper mathematical models, numerical algorithms, experimental studies and practical applications of Aerosol Beam and Cold Spray Direct-Write processes will be presented.
Keywords
micro-fluidics, aerosols, droplets, Saffman force
Summary

The advent of new emerging technologies in materials deposition during recent years, along with new experimental tools, as well as substantial progress in high performance computing, have resulted in a growing research thrust directed to understanding of the nature of the high speed multiphase  flows in micro-scale. In this paper, two types of so-called “direct write” processes will be discussed from theoretical and experimental viewpoints.

Aerosol Beam Direct-Write.  It is shown that under proper conditions an aerosol flow through micro-capillary reveals new manifestation of microfluidics: the Saffman force acting on aerosol particles in gas flowing through a micro-capillary becomes significant thereby causing noticeable migration of particles toward the centerline of the capillary. This finding opens up new opportunities for aerosol focusing, which is in stark contrast to the classical aerodynamic focusing methodologies. The lines deposited by this method are shown to exhibit widths of 5 micrometers – superior to ink-jet.

Cold Spray Direct-Write. The basic principle of the cold spray process is the following. A high velocity gas jet is used to accelerate solid particles and spray them onto a substrate. The kinetic energy of the particles helps these particles to deform plastically on impact and form splats, which bond together to produce coatings. The speed of solid particles in cold spray process is much higher than speeds of aerosol particles in aerosol beam deposition process. Cold spray is a relatively young process and still considerable efforts are needed to understand and control the process, as well as develop methods to focus the beam of solid particles in a similar way it is done for aerosol beam direct-write.

In the paper mathematical models, numerical algorithms, experimental studies and practical applications of Aerosol Beam and Cold Spray Direct-Write processes will be presented.

Akhatov, I.S., Hoey, J.M., Swenson, O.F, Schulz, D.L. Aerosol focusing in micro-capillaries: Theory and Experiment. Journal of Aerosol Science, 2008, 39, 691-709.

Akhatov, I.S., Hoey, J.M., Swenson, O.F, Schulz, D.L. Aerosol flow through a long micro-capillary: focused collimated aerosol beam. Microfluidics and Nanofluidics, 2008, 5, 215-224.